(IJAER) 2021, Vol. No. 21, Issue No. VI, June

SURVEY ON DEVANAGARI CHARACTER RECOGNITION USING DEEP LEARNING TECHNIQUES

Ramprabhu S. Khakare, Prof. Vina M. Lomte, Riddhi N. Pawar, Ranjit T. Makawne, Siddhi N. Pawar

Department of Computer Engineering, RMD Sinhgad School of Engineering, SPPU, India

ABSTRACT

Since the past few years, character recognition is gaining attention of most of the researchers because of its various applications in different sectors like automatic recognition of vehicle number plate, data entry for business documents for example cheque, bank statement, passport, invoice and receipt, in airports for passport recognition and information extraction. There are many variations in writing styles from individual to individual which makes character recognition challenging. Deep learning techniques can be used to find solutions for recognition of characters using different algorithms. A single letter or digit can be written in many ways and styles which increases the size of the dataset to be utilized. The goal of this work is to join AI methods to enhance and improve the character recognition process.

Keywords: Deep Learning, Optical Character Recognition(OCR), Transfer Learning, Inception v1, CNN, image segmentation, feature extraction

INTRODUCTION

Out of a few significant uses of Machine Learning and profound Learning, picture and example acknowledgment empowers distinguishing proof of pictures and examples for various use cases or applications. Picture acknowledgment method centers around removing fundamental highlights from pictures to sort pictures into various gatherings. Due to such assortment of utilizations, Optical Character Recognition(OCR) has acquired a lot of significance as it perceives text from some random picture or report. It can likewise be utilized to distinguish characters from transcribed contents. Acquiring high acknowledgement correctly on manually written character datasets is a difficult issue on the grounds that there can be various ways or styles to compose the various characters. Because of this high assortment, the immediate utilization of pixel powers is kept away from on the grounds that there is once in a while little cover between two pictures showing a similar character. Figure beneath exhibits the various ways or styles to compose characters in Devanagari content. Along these lines there are a large number of potential outcomes that vary from individual to individual to compose characters in any language. For this reason distinctive datasets are to be created which are trying because of various composing styles, various ages, schooling, and so on In this paper we have considered diverse datasets and distinctive character acknowledgment methods yield better exactness and results that are expected.

(IJAER) 2021, Vol. No. 21, Issue No. VI, June

Few architectures used are as follows:

- a) Vgg representations also provide accurate results; however are computationally expensive in comparison to Inception et al[1].
- b) DenseNet representations did not show better accurate results but can possibly show better accuracy over other datasets et al[1].
- c) AlexNet is fastest and also provides reasonably good accuracy et al[1].
- d)Inception v1 i.e GoogLeNet is designed very deeply yet slim, with a total 19 layers (counting for all convolutional layers, pooling layers, fully connected layers and softmax output layer)[2].

Fig 1: Devanagari Alphabets [3]

The following diagram shows the proposed architecture which represents the modules data preprocessing, segmentation, feature extraction and recognition.

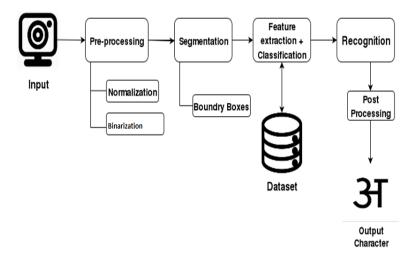


Fig 2: Proposed Architecture

(IJAER) 2021, Vol. No. 21, Issue No. VI, June

LITERATURE SURVEY

Sr No	Published Year	Published by	Research Topic	Advantages	Limitations
1	2009	Ujjwal Bhattacharya, B.B. Chaudhary	Handwritten Numeral Databases of Indian Scripts and Multistage Recognition of Mixed Numerals	Implemented for recognition of handwritten numerals in mixed script situations. Like Marathi, Bengali, English.	If we ignore misclassification within the shape-similar classes, recognition accuracies will increases.
2	2013	Ms. Neha Sahu, Mr. Nitin Kali Raman	An Efficient Handwritten Devanagari Character Recognition System Using Neural Network	Accuracy of the recognition of characters will increase if we train network with more number of sets.	This system can be implemented for recognition of words with more characters, with matras and for sentence and documents. The segmentation shortcomings of the system can be reduced.
3	2014	Ashwini Navghane, Adwait Dixit	Handwritten Devanagari Character Recognition using Wavelet Based Feature Extraction and Classification Scheme	Wavelet features for classification and recognition is used which provide an elegant tool for multi resolution analysis.	Scope of recognition of characters was limited to 20 characters.accuracy can be improved further by using multistage feature extraction schemes.
4	2014	Pranali K Misal, Prof.M.M. Pathan	Design & Implementation of ANFIS System for Hand Gesture to Devanagari Conversion	System uses ANFIS (Adaptive Neuro Fuzzy Inference System) to convert Devanagari gestures into voice using audio database	System uses fuzzy logic which requires lot of mathematical calculations and audio dataset is also limited.
5	2015	Shailesh Acharya, Ashok Kumar Pant, Prasanna Kumar Gyawali.	Deep Learning Based Large Scale Handwritten Devanagari Character Recognition	Introduce a new public image dataset for Devanagari script: Devanagari Handwritten Character Dataset (DHCD).	From the results, it can be concluded that the transfer learning is better option for faster training with fewer training samples.
6	2015	Wong Yoong Xiang, Patrick Sebastian	Designed a image segmentation based Handwritten character recognition system.	This paper presents development of system that is robust enough to recognize numerical handwritings with lowest error.	The first test was done with a neural network trained with only the Character Vector Module as its feature extraction method.

(IJAER) 2021, Vol. No. 21, Issue No. VI, June

7	2015	Sushama	A Fuzzy based	Three layers of CNNs	The classification is done
		Shelke, Shaila	Classifica-	are used. Devanagari	using two stages, first stage is
		Apte	tion Scheme for	handwriting can also be	based on fuzzy inference
		-	Uncon-	classified via fuzzy	system and second stage is
			strained Handwritten	based classification.	based on structural
			Devanagari		parameters.
			Character		
			Recognition.		
8	2016	Hubert Cecotti	Deep Random	evaluated impact of	Further work will include
			Vector Functional	architecture on system.	convolutional
			Link Network for	results confirmed that	RVFL(Random Vector
			Handwritten	increasing size of	Functional
			Character	hidden layers has a	Link)/EML(Extreme
			Recognition.	significant impact on	machine Learning) models to
				performance.	evaluate the choice of pooling
9	2018	Aarti Mohite,	Handwritten	In this paper they used	and convolution techniques. Accuracy can be improved,
9	2010	Sushma Shelke	Devanagari	transfer learning of	by implementing more
		Susiiiia Siicike	Character	pretrained architectures	preprocessing algorithms like
			Recognition using	like Alexnet, Googlenet,	image cropping, before
			Convolutional	and ResNet.Used pre-	applying to deep learning
			Neural Network	trained architecture	network.Scope of recognition
				saves time to develop	is limited to characters only.
				CNN architecture from	•
				scratch.	
10	2018	Neha & Deepti	Handwritten	It contains an linear	system can be implemented
		Ahlawat	alphanumeric	transformation. It	for recognition of words with
			character	provides a good	more characters, with matras
			recognition and	generalization	and for sentence and
			Comparison of	capability. The problem	documents. segmentation
			classification	of overfitting is	shortcomings of system can
			techniques.	eliminated. Reduction in	be reduced.
				computational complexity.	
11	2018	Rohan Vaidya,	Handwritten	Offline handwritten	The amount of computational
11	2010	Darshan	Character	character detection	power needed to train a neural
		Trivedi, Sagar	Recognition Using	using Deep Neural	network has increased due to
		Satra, Prof.	Deep-Learning	Networks. A image	the availability of GPUs and
		Mrinalini		segmentation based	other cloud based services
		Pimpale		character recognition	like Google Cloud platform
		1		system using OpenCV.	and Amazon Web Services
					which provide resources to
					train a Neural network on the
					cloud.
12	2018	Prasad	Handwritten	Successfully tried to	From the results, it can be
1			Devanagari	classify handwritten	concluded that the transfer
		Sonawane.	•	· ·	
		Sonawane. Sushma Shelke	Classification using	Devanagari characters	learning is better option for
			•	· ·	

(IJAER) 2021, Vol. No. 21, Issue No. VI, June

13	2018	Aarti Mohite Sushma Shelke Nagender Aneja Sandhya	Handwritten Devanagari Character Recognition using Convolutional Neural Network Transfer Learning using CNN for	help of AlexNet. Use of AlexNet, A convolution neural Network, shows impressive results. In this paper they used transfer learning of pretrained architectures like Alexnet, Googlenet, and ResNet. In proposed model, Inception v3 performed	Accuracy can be improved, by implementing more preprocessing algorithms like image cropping, before applying to deep learning network. Scope is limited to recognition of devanagari
		Aneja Sushma Shelke, Shaila Apte	Handwritten Devanagari Character Recognition.	better in terms of accuracy.	alphabets.
15	2019	Yamini Patil. Amol Bhilare	Digits Recognition of Marathi Handwritten Script using LSTM Neural Network	Connectionist Temporal Classification layer of RNN approach reliably beats other ML approaches as far as expectation of complex digits of Marathi.	despite fact described model indicated great outcomes, it is difficult to induce performance of analysed techniques.
16	2019	Shivansh Gupta,.Ramesh Mohapatra	Performance Improvement in Handwritten Devnagari Character Classification	The proposed Capsule network extracts spatial information and improves the capabilities of traditional CNN(i.e. pooling operation in CNN ignores spatial information). Described model uses capsules to describe features in multiple dimensions and dynamic routing to increase the performance of network.	This CapsNet has inner looping which makes the computation time quite large, so reducing the time can be done by finding other technique that has less computational load.
17	2020	Yash Gaura ,Rajeshri Jadhav ,Swati sinha ,Priyanka Bhagat	Devanagari Handwritten Character Recognition using Convolutional Neural Networks	In the proposed model, They used consecutive convolution layers which brings added advantage in the process of extracting higher- level features and finally resulted into high accuracy.	In the System, segmentation is done character-wise instead of breaking a word into several modifiers which is standard approach. Accuracy and proper contextual conversion need to be checked for satisfying successful implementation.

(IJAER) 2021, Vol. No. 21, Issue No. VI, June

LIVE SURVEY

A) Optical Character Recognition by C-DAC(Centre for Development of Advanced Computing)[21] -

- C-DAC developed an oriya OCR which provides conversion of text from scanned images of oriya script and supported formats are .tiff, .png, .bmp.
- For Malayalam OHR, classifier has been developed which are capable of incremental learning for classification and recognition.
- C-DAC has also undertaken research in the challenging areas of Online Hand Written Recognition(OHWR).
- Go-Write from C-DAC is an online handwritten system which is able to run on Tablets as well as Smart phones.
- C-DAC GIST (Graphic and Intelligence based Script Technology) lab's research seeks to develop an OCR Engine, which will enable highest levels of accuracy in converting Indian language images to text. The basic OCR for Devanagari script named 'Chitrankan'.

B) Technology Development for Indian Languages, the premier R&D organization of Ministry of Electronics and Information Technology(MeitY)-

- This organization has also done many projects for OCR.
- Their projects include OCR for Malayalam, odia, Punjabi, Telugu and Devanagari script.
- SanskritOCR, E- aksharayan and Chitankan are the examples of OCR system.

C) OCR System for Bharati Script [22]-

- Dr srinivasa chakravathy and his team at IIT Madras has developed a method for reading documents in Bharati Script by using multi-lingual optical character recognition scheme.
- Bharati script is unified script for 9 Indian languages includes Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Telugu, Kannada, Malayalam and Tamil.

D) OCR System Based Modified Google Lens -

- Google announced the process of introducing new features in google lens that will allow us to search our google photos library for text that appears within photos and screenshots.
- This feature is available now on most of the android devices although it is not quite active on IoS devices.

(IJAER) 2021, Vol. No. 21, Issue No. VI, June

E) Microsoft Introduced Character Recognition In Excel for IoS [23]-

- For the purpose of conversion of snap photos of data presented in columns and rows into an editable Excel spreadsheets, Microsoft introduced Google-Lens like Character recognition System.
- Image Recognition tool in Microsoft Excel Android and iOS apps is available through a button called 'Insert Data from Picture'.
- Beyond Excel, Microsoft is also providing ability to users that they can convert handwritten notes to digital text quickly.

ALGORITHMIC/ACCURACY SURVEY

Handwritten Devanagari character recognition has been examined by various features extraction methods and classifiers. Different factors like handwriting styles, image quality and clarity, affects the efficiency of the recognition system. Some algorithms like R-CNN gives accuracy upto 97% but not 100% accuracy. Following table shows the accuracy of different algorithms used in character recognition systems and research gap.

Sr No	Paper Title	Publication Details	Algorithm	Accuracy	Research Gap
1	Comparative study of	ICDAR, U. Pal,	Mirror Image	94.94%	Mirror Image Learning (MIL) is
	Devanagari	T. Wakabayashi,	Learning (MIL)		a corrective learning algorithm
	Handwritten Character	F. Kimura, 2009			proposed to improve the
	Recognition using				learning effectiveness of class
	Different Features and				conditional distributions but
	Classifiers				works less accurately for
					confusing classes.
2	Comparative Study of	ICDAR,U. Pal,	Modified	94.42%	A lot of mathematical
	Devanagari	T. Wakabayashi,	Quadratic		computation is required as X is
	Handwritten Character	F. Kimura,2009	Discriminant		the feature vector of an input
	Recognition using		Function		character; M is a mean vector of
	Different Feature and		(MQDF)		samples; T i is the i th eigen
	Classifiers				vector of the sample covariance
					matrix.
3	Comparative Study of		SVM	93.96%	SVM is defined for two-class
	Devanagari	T. Wakabayashi,			problem and it finds the optimal
	Handwritten Character	F. Kimura,2009			hyper-plane which maximizes
	Recognition using				the distance, the margin,
	Different Feature and				between the nearest examples of
	Classifiers				both classes.
4	A Fuzzy based	ICCICT,	Fuzzy based	96.95%	Classification is done using 2
	Classification Scheme	Sushma Shelke,	classification		stages, first based on fuzzy
	for Unconstrained	Shaila Apte			inference system and second
	Handwritten	,2015			based on structural parameters.

(IJAER) 2021, Vol. No. 21, Issue No. VI, June

	Devanagari Character Recognition				
5	Handwritten Character Recognition Using Deep-Learning	ICICCT, Rohan Vaidya, Darshan Trivedi, Sagar Satra, Mrunalini Pimpale, 2018	R-CNN	97.1%	The amount of computational power needed to train a neural network has increased due to the availability of GPUs and other cloud based services like Google Cloud platform.
6	Handwritten Devanagari Character Classification using Deep Learning	ICICET, Prasad K. Sonawane , Sushama Shelke, 2018	CNN-AlexNet	95.46%	It can be concluded that transfer learning is the better option with fewer training samples and not large.

CONCLUSION

The main purpose of this paper is to study GoogLeNet in recognition of the Devanagari characters in comparison with other techniques .

We also observed that techniques for identifying and detecting Devanagari characters from pictures, as well as handwriting are valid.

GoogLeNet architecture consists of 22 layers (27 layers including pooling layers), and part of these layers are a total of 9 inception modules.

It was the winner of the ILSVRC 2014 competition was from Google.GoogleNet trains faster than VGG.

Size of a pre-trained GoogleNet is comparatively smaller than VGG. A VGG model can have > 500 MBs, whereas GoogLeNet has a size of only 96 MB.

REFERENCES

- [1] N. Aneja and S. Aneja, "Transfer Learning using CNN for Handwritten Devanagari Character Recognition," 2019 1st *International Conference on Advances in Information Technology (ICAIT)*, Chikmagalur, India, 2019, pp. 293-296.
- [2] Zhuoyao Zhong, Lianwen Jin, Zecheng Xie ,"High Performance Offline Handwritten Chinese Character Recognition Using GoogLeNet and Directional Feature Maps",2015 *ICDAR*
- [3]https://github.com/Iamsunilsharma/Devanagari_Handwritten_Character_Recognition_using_Multi_Layer_Convolution_Neural_Network
- [4]Prasad K. Sonawane, Sushama Shelke, "Handwritten Devanagari Character Classificationusing Deep Learning", Aug 2018.
- [5]S. Shelke and S. Apte, "A Fuzzy based Classification Scheme for Unconstrained Handwritten Devanagari Character Recognition.", Jan 2015

(IJAER) 2021, Vol. No. 21, Issue No. VI, June

- [6]B. Shaw, S. Parui and M. ShridharB. Smith, "An approach to graphs of linear forms (Unpublished)."
- [7]Y. LeCun, Y. Bengio and G. Hinton, "Deep Learning," May 2015
- [8] Collobert, R., et al., "Natural Language Processing (Almost) from-Scratch," *Journal of Machine Learning Research*, 2011.
- [9]"Deep Learning Based Large Scale Handwritten Devanagari Charac-ter Recognition.", 9th International Conference on Software, Knowledge, Information Management and Applications (SKIMA),2015
- [10]Y. Tai-Shan, T. Yong-Qing, and C. Du-wu, "Research on handwritten numeral recognition method based on improved genetic algorithm and neu-ral network.",2014
- [11]W. Xin, T.-l. Huang, and X.-y. Liu, "Handwritten Character Recogni-tion Based on BP Neural Network,",2015
- [12]Kai Ding, Zhibin Liu, Lianwen Jin, Xinghua Zhu, "A Comparative study of GABOR feature and gradient feature for handwritten chinese char-acter recognition", Nov 2007
- [13]A. Ray, A. Chandawala and S. Chaudhury, "Character Recognition using Conditional Random Field Based Recognition Engine", 2013
- [14]Parul Sahare and Sanjay B. Dhok, "Multilingual Character Segmenta-tion and Recognition Schemes forIndian Document Images"
- [15]Jasrotia, D. K., & Malik, A. (2018). OCR, Webcam, Template Matching Feature Extraction [16] international journal of engineering sciences & research technology, 7(8), 216-222Jasrotia, D. K., & Malik, A. (2018). OCR, Webcam, Template Matching Feature Extrac-tion. international journal of engineering sciences & research technology, 7(8), 216-222Jasrotia, D. K., & Malik, A. (2018). OCR, Webcam, Template Matching Feature Extraction. *international journal of engineering sciences & research technology*, 7(8), 216-222
- [17] Athiya Marium, Deepthi Rao, Divina Riya Crasta, Kavya Acharya, Rio D'Souza, Department of Computer Science and Engineering, St Joseph Engineering College, Mangaluru, India, "Hand Gesture Recognition using Webcam", 2017
- [18]Savita Choudhary, Nikhil Kumar Singh, Sanjay Chichadwani, "Text Detection and Recognition from Scene Images using MSER and CNN", 2018 International Journal of Future Generation Communication and NetworkingVol. 13, No. 3s, (2020), pp. 1737–17431746ISSN: 2233-7857 IJFGCNCopyright ©2020 SERSC
- [19]Yoshito Nagaoka, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi, "Text Detection by Faster R-CNN with Multiple Region Proposal Networks", 2017
- [20] Yingying Jiang, Xiangyu Zhu, Xiaobing Wang, Shuli Yang, Wei Li, Hua Wang, Pei Fu and Zhenbo Luo, "R2CNN: Rotational Region CNN for Arbitrarily-Oriented Scene Text Detection".
- [21] https://www.cdac.in/index.aspx?id=mc ocr ocr and ohwr
- [22] https://currentaffairs.gktoday.in/tags/optical-character-recognition
- [23] https://www.digit.in/news/apps/microsoft-introduces-google-lens-like-character-recognition-in-excel-for-ios-to-convert-smartphone-p-48310.html